1 3 2013 Introduction * Representation of DER Thout O.1 · Transaction table 90 91 1. Construct a language accept the string with length 2 over sign expect to 0,1 Solai. L = 800,01,10,113 2. Construct a DFA which acception all the strings our the alphabet E = 20,13 startis with O. Sola: L= 20,01,011,0101,0110,0000 3 20 20 20 Construct DFA which accept the strings over the alphabet E. 20,13 & starts 0,1. L. 201,011,0110,0101

E-closer (6) : { 7, 2, 3, 63 (F) (8) : 18,2,3,63 * Concession of NFA with Epsolon to NFA without Epsolon in automota theory. Step1: Find Epsolon Closure. Step 2: Find the transaction, d (Q.a) = E-Closes (d (E-closes (Q),a) Step 3: Final the finial State, F' = FU { 2003 & if &-closure (and is having Fas a member 3 Ext-Shi a. Steps: final Epodon Closuse. E-closuse (200) = 2 90, 9, 92 3 (Q1) = & 9/2, Q13 C92) = { 923 b. Step 2: Final the transaction. d'(a), a) = E-closes (d(E-closes (a),a) · (qua) 1 (90,a) = E-clases (dCE-clases (90) a)) => E-close (& (00, 01, 96) a)) -> 6-closes Co[caro,a) U (ara,a) U(ara,a)] => E-doses (& (\$ UV, UV,)

E-claser (QV) => 891, 92 & · (No, b) d'(ovo, b) = E-closes (d(E-closes (vo) b)) => E-closes (d(90,91,90))) => E-closes (& (96,6)20,6)20(02,6) => 6-closes (& (Quo Up UQUO) => E-close (90) = 390, 01, 9/2 8 · (91, a) à (qu, a) = E-closes (d(E-closes (qu)a) => E-closes (& (au, auz) a) => E-closen (& (Qu, a) (Q2, a)) => E-closes (& (av. U9/2) => E-closes (QU.) = 8 QUI, QU. 8 (av., b) d(Q1), b) = E-closes (d(E-closes (Q1)b)) = E-closes (& (V1, 92), b)) = E-closes (& (91, b) U (912, b) = E-closes (& Cavo, a), a) 293 (9/2,a) d'(QV2, a) = E-claser (d(E-claser (Q)2)a) (Lacqua). a)) (& (Q2,a)) = E- clases (& Car, al2) = E-closes (& (a)0, a), a)2)

Minimization of DFA. Reclucing the no of states in the given DFA none as minimization of DFA East O C C C C Solni- Stepl: Construct transition table. A B C B B C C B C O B E The B C Step 2: Generate two sol's I with finial state of another I with non-finial state is known as gen equalent's. Non-finial = & ABCD & finial = & E &
Step 2: Generate two sols with finial state & another I with ron-finial state in Known as zero equivalent's. Non-finial = & ABCD &
A B C B B C D B E * E B C Step 2: Generate two set's I with finial state & another I with non-finial state is known as zero equivalent's. Non-finial = § ABCD &
A B C B B C D B E * E B C Step 2: Generate two set's I with finial state & another I with non-finial state is known as zero equipment's. Non-finial = § ABCD &
3tep 2: Generate turn rotis I with finial state & another I with non-finial state is Known as zero equalent's. Non-finial = & ABCD &
Onother I with Non-finial istate is known as zero equialent's. Non-finial = & ABCD &
Onother I with Non-finial istate is Known as zero equialent's. Non-finial = & ABCD &
Non-finial = & ABCD &
One Equalance & A.B.C 3 & D3 & E3
(A,0) = B $(A,1) = c$ $A=B$ $(B,0) = B$ $(B,1) = D$
2 A,C

2.	P. J.	Des 1
Part I	((a))	
Schi-	Step 1: Truth to Trans	
- 12	otep 1: truth to Trans	action table.
	8 10 11	
4-	20 W1 V3	
	21 22 24	9 161 101 101 111
	22 21 24	
	9/3 9/2 9/4	Top (0)
*	N4 N4 N4	- 5111
	Step 2: Generate d Dt finial States A = 8 %0.0 B = 8 90.0	· · · · · · · · · · · · · · · · · · ·
	One Equalence. & No.	V2, 933 EV, 3 EV43
Y.	20,21	
	(90,0) = 91 (9	10,1) · 9/3 9/0 = 9/1
	(Q1,0) = V2 (0	V1,0) = 94
	(a) (a)	(3)
	VO NE	
		6.1×9/8
		= Qu
ı	Two Equatores & 24	, NSB EN23 EN03 EN

Vail 2 * Regular Expression 12 12 11 It is defined as Epsilon E & regular expression corresponding to L: 263 of is a signal corpression charpondin to L = 2 3 x is a dea (Alexporalia to 6. 823 if a day exp ores the lang local & is a legular exp our the language LCy) thom x + y is a say eap consponding to cas o cas topse LLCXUYD = LCXDULCYD L(x)= (L(x)* L(x) = L(y) where (x.4)=(x).1(4) * R-closure is a reguler expression then LCR*). (LCR) The language used for writing the socretar explesion is called dequelar language "RL can be defined by DFA, NFAWIR E. NPA & with regular capación 1. RE denoted the lang with strings housing any no of as E= Eag

(4)	2 44 4	*	Ruk 81-	Rules:	Ruh 3:- Ruh 4:-		4	18 L 20	1 Po TO	18	
R5	them the \$ R = Q+RP Will have a unique	Advenis theorem.	12+	1* 1 = 1 + 1 = 1 + 1 = 1 + 1 + 1 = 1 + 1 +	スペニ ナ・ル = ル・3 中 ペニ カ・ト = ト・カ カ ペニ カ・ト = ト・カ	P.Q.R Hom	Dulus of DE	harmon a	gain & bis ours & fabs strangis	RE . \$0.43	
	oprevaion transati				THE .			to shorts	St. Prints		

100	
	Theorems Proof !
200	Proof 1:- R=Q+RP -> ENA O R=Qp* -> ENA @
Echn	R=Q+RP ->0 -> Q + (QP *)P Q + QP * P Q (1+ P*P)
	Q (E +P*P) [R => QP*] 11:
3.	Proof 2!
Selvie	Substitute squ EqA (1) in $R = Q + RP$. $R = Q + RP -> 0$ $R = Q + QP + RP^2 -> 0$
	=> Q + (Q+RP)P => Q + QP + RP ² -> @
	$R = Q + QP + RP^{2} + \rightarrow \emptyset$ $Q + QP + (Q + RP) P^{2}$ $Q + QP + QP^{2} + RP^{3} \rightarrow \emptyset$
The same of the sa	$R \Rightarrow Q + QP + QP^{2} + RP^{3} -> \emptyset$ $Q + QP + QP^{2} + CQ + RP^{3} P^{3}$ $Q + QP + QP^{2} + QP^{3} + RP^{4} -> \emptyset$ $E' \cup E^{2} \cup E^{3} \dots E^{n}$
	in equa @ 'Q' in Common R = Q C 1+P + P2+ P3+P4 pm)
COST OF	

* Regular Grammer. It is a set of quecelacyste element NT: & H.B.C.D3 capital letters (which is Similar to State's in finite automata) 2. I is a set of terminals which is represented in Small letter's T= 8a, b, c, d ... 0,1,23 Dimilar to input Elements & in finite autom -ata. 3. P is production rule. 4. 8 start state. -> Production rule it is known as grammer by hereing both THIS & LHS. a LHB it contain's only non terminals. & RHS is a Combination of E of a Diring Containing a terminal & non-terminals. LHS -> RHS A -> aB 80c: → (A) a x (B) is used by input a * Rayulas Grammes A grammer is set be degeles gramme

	based on the production rule.
	Production rule. LHS: It contains single non-teaminal! PHS: It contains Epsolon, teaminal, temis followed by non-teaminal, non-tem followed by teaminal.
Sur Su	LHS -> RHS NOT a RG S -> E Z -> aBd A -> b C -> bZ X -> Yc
1. [R. Gr was divided into 2 types left linear grammer. Right linear grammer.
1. 1	LHS -> RHS
Y	A -> A
	ight linear grammer. RHS -> HHS -> RHS B -> OLE
* Cor	mension of FA to RG
0	Cannad with Ol

-	I-Idolitional state will be the finial state.
S.	I-I deli tronal sitale with
*	Transaction's in Automata (d)
1.	For every production A->aB, if should be getween as JCA,a) +B
	Setuen or JCA, a) -> B
2.	For Every production A >> b that if should be written as d (A, b) -> final state.
	Ex:
-	S > 0A / 1B / 0/1
-	A -> 03 / 18 / I
-	B -> 0A 128
	C . Al. 0
۵.	S -> 0A 1A A -> 0A 1B +B -13
	B->0B/1B/0/1
Solni	0 8->0A B->6B
	8->1A B->1B
	A->OA B->-
	A -> 1B B -> 0
	$A \rightarrow +B$ $B \rightarrow 1$
	A -> -B
361	3443
2	d(80) -> A B->0 => d(8,0) => FS
	d (SI) -> A B->1 => d(B, i) => P8
1.5	6 CAO) -> A
Laura	JCAID -> BILL IN AUGUST -
	1(A+)->B
in and	16A-2-2 B
	1 CBO) -> B
	9(81) -> 13

	4	
		1
& Pumping Lomma		2C = 000
ton is againgnal trad housing at hour is not		2 6 6 6 6
at it supported to a string is deposited man act of a sample to construct to all a construct of it alders at it allows all a contract of the sample of the s	y	Case 1 1yl > 0 1xyl = C 1bbbl > 0 1aaabbbl = 9
Regular in language - was it is allow	4	and allest
Steps: Consider a language as acquias.	-	84) for every 100, or yis.
string is from I such that INIZ	1000 100	anabbb is not regular.
steps: Divide Was x,y, z where 141 >1		Prove the lang L= 200 6 / 1 21 3
Step 4 1. For every i >0. Every string of	Solni-	(5) L = Eab, aabb, aaabbb, aaaa, bbbb.
Example. 14	ifarine.	@ Bonsterd 'c' & select the string 'w'
1. Proue L= fa" m, n > 0 & Proue that it	Toront	1001 = C 1000 bbb 1 = 6
3) L: & abb, aa bbbb, aaa bbbbbbb, aaaa bbbbbbbb	6_3	3 Divide 'us'
32) Assume constant 'C' & select the string's	5 5 2 5	y ab
INI = C lacabbbbbbb 1 = 9		3 bb
(S3) Divide 'w'		lyl > 0 layl & C
w. ana blobbbb	1	ab >0 aaab = 46

(Sh) for energy i to so xyiz Assume 100 acibb de angutora (sogular) anabbb (Angular) i= 1 x 422 and abob bbb is not exqueless hence proved. * Conteat free grammes. (CFG) V is known as non-teaminals is known as Terminals P is Known as Production rule only one 1 Single non It can contain &, teaminal, terminal non-terminal & Combination of · terminal & non · terminal 8 is know as Start Symbole. * Problems 1. Construct a CFG which accept the string having at least 2 a's over = fa & b& das : baba -> String's 8 -> Ta Ta Ta T T-> AT | BT | E pane Depane 2ais = baba -> 8trings

	RG CFG
	1. It consist of H Tuple 1. It consist of the tuple &VTRP & where the EVTRP & where the production rule is defined production and is
2	as E, NI, I, IQ NI defined as E, NI, I, The
	Poasing. Passing.
8	This used to construct 8. It is used to construct ATA ADA POA
	It is known as type - 3 4. It is known as Type grammer. grammer. grammer.
5.	RG is a Subart of CFG. 5. Eurag CFG may not Euray RG Cembe Contead ba RG.
6.	Syntax of any Programing 6. Syntax of any lang. Can't been be programming lang. represented completely by can be represented
*	Types of Derivation Passe tree.
-	Those one of types of trees:- Left most desircation (LND). Right most desircation (RND).

LLMD The desiration will be done grow less most non-terminal in production rule 2. Rmp The desiration will be done from sight most non-terminal in the production rule E-> E+E E -> alble. String = a+b + C LMD a+6*E 0+6 + C

			The state of the s
_	EBA &	a.a.	1.30
_	4	4	
_	GA	aaA	
100	1	4	
_	€.	- 6	
	00	90	
	by using LMD +	nous desiring rea more the	the string as
- a.	RMD & proce i	-> E+E	by using
		-> E * E	-
Solni-	E->E+E	>id.	E-> E * E
Comi	1	war and	7.
	E+ E*	E	E * id
	analos la		4
	E+E*	id	E+E * id
		2350	
10	Etid	* id	E+id * id
		2101	4
	id + id	* id //.	id+id+id
	has been proved	that it h	id+id +id es ambiguous
* 3.	Doine the Striv Using the LMD grammes is a	and prove.	btaca by

8 -> icts Soluis S -> ict Ses s ->a ibtiblibbaca ibt i 6+ ses ibti btses ibtibtict 8es ibtibtibtses ibtibt ibtacs ibtibt ibtaca 3 - sicts ibt3 ist & ibticts ibtibts ibtibtict 8es

ibt ist ist int so ibt ibt ibt ses ibt ibt ibt akes ibt ibt ibtacs ibtiblibtaca # Simplification of CFGr. To avalue the productions it can be clone using 3 ways col. 1. Removing useless symbols. A >a B -> p (C -> c) -> less less 2. Removing rull Productions. & E production 3. Removing Unit productions. it is Known as unit production

+ Freblems (Removing users symbol T-LOAB abA T B-LaA B-1 ab | b Solat T-> aaBabAIT -> Non-teamined removes A-raA Btablb T-SaaB I Btablb S -> ABla 2. A->b Solni-8 -> AB/a A-1b 3->00 a 8->a * Removed of nell or E-production 1. 8-> aMb M-saMb MAE Apply 't' in the place of M. 80 mi-8-> amb - amb ab M-LaMb - a Mb lah

2 8 -> × Y× X -> 0x/6 Y-104/E > x 1x / xx / xy / y X -> OX/E -> 0×/0 8->xxx x xxxx x -> 0 x 10 Y -> 04/E 8-> x y x / y x / x y / y / x x / x /; 8 => x xx / x + / x x / y / xx/x X 7 0x/0 0/10 x- 4 * Removel of Unit production. 1. 8 -> x 4 x / 4 x / x / x / x X -> AB Y -> C 80/n Y-> C is unit production

	Onto / / Page No.
	8->AC A>a C->b/d.
*	Kemoush of left Recursion
	Recusesion was divided into 3 types
	Norman secusosion
2	Right "
-3	Kight "
-	Domal Recussion
	The same non teaminal on CHS
	appears the same on this than it is called
	normal socuresion.
	9x:- 3-> ASB
- 6	,
2	Left Recussion
-	3-> Sa
	3-70a
3.	Right Recuasion
	0
37	S->as
	h 1 10 1
*	Remarke the left recursion for the following
	of Grammer
Column	H→ fla/b.
John	A -> PU, Maria
100	$A \rightarrow bA'$ $A' \rightarrow aA'/\epsilon$

	0
*	Champky Normal form. (CLNF)
1	Rule 1 i- The steat symbole Can have goslar Doolerchin (1->6)
	Rube 2 1- A non-tesminal generating single terminal (A > b) > cra
111	CFG to CNF. pollowed in the consision of
∞	"- Remote steat symbole of the RHS holits another
	(50cample! 8 -> A813 8, -> 8 8, -> 8
53.	The second second
8	33:- Replace teaminable on RHS with Non-teaminal of Greate rais production. (nearle rais production. 2017 A -> a.C.
24	S4:- Recluse the no of Non teaminade on the by Gooding now production.
	THE REAL PROPERTY AND PERSONS IN COLUMN 19 I

EXX B -> CDE 13 -> YE Y -> CD. 1. Convert the following Grames in CFGs to CNF 8 -> AsB/aB A -> B/s 13-5 b/E Solai-Step 1: Remove the Stout Symbole by generati new non-teaminal. J-> ABB/aB 3, -> 5 8 -> ASB aB. Step 2 :- Simplification of S -> ASB aB A -> B 3 B -> b/E -> ASB/aB/As/a H -> B | 3 | E > ABB AB AS a -> B 3 E

Step 3: Replace terminal with new non terminal 8, -> ABB XB AS a 3B 3 -> ASB(xB) AS/a (3B A -> 6 AB XB AS 0 3B B -> b X-1a Step 4: Reduce the no of non-terminals 8, -> YB XB AS a SB 8 -> YBI XB| AS | a | 3B A -> b/YB/XB/AB/ABB B->b X ->a Y -> AS * Greibach Normal form (GNF) a. Rule's in GINF 1. Staat symbole can generate Epoclon (3->E) 2. If non-teaminal generating single terminal (A > b), 3. If non-teaminal generating terminal followed by any no of terminals or non-terminals. (A -> aACDDE f GH) b. Step's to Convert CFG to GNOF SI: - CFG is in CNF 82: - Re-Name non-teaminal with numeric Variables

in availing order in which they appear PA->BC 2 (A) -> A2 A3 J 35: - Consider Ai generales Aj where icj, is apply substition method. Shi- Tremous Ceft securision.

Sti- Make the production's following the GINF rule's Example: 1. 8-1 CA BB solaiigh. The grammon given is in CNF. 32: Re-name non-terminals to numeric Vacinable's. S - CA BB => A1 -> A2 A3 A4A4 B->6 8B => A4->6 A1A4 C -> b => A2 -> b A -> a => A3 -> a S3: Consider i value & j' Value. AI -> AZ AZ AYAY Ay > b AIRY A3 >a Apply substitution method by substituting

A4 -> 6 / A2 A3 A4 / A4 A4 A4 Apply substition method by substitution Re Ay -> b | b As Ay | ALL ALL AY Apply substition method by substition A3 Au-> b | bAzAu | AuAuAu. i = J Apply left accuracion AH -> bz bA3A4Z z - Au Auz/e Femore 2-> E A4 -> be | b A3 A4 E | b | bA3 A4 Z -> A4 A4 Z/ A4A4. Substate Au in the Z AH-> bz / bA3 A4z / b/ bA3 A4 Z -> AY AYZ / AYAY > Z -> 62A4Z / 6A3 A4Z A4Z / 6A4Z / 6A3A4 A41 bzA4/bA3A4ZA4/bA4/bASA4A4) This is in GNF

AL -> AZAS / ASAU apply substitution method by Az AT-> b As | AuAy ALL AU Substitue Au in Al A1 -> 6A3 | 6ZA4 | 6A3 A4Z A4 / 6A4/ b/Az Au Au ? * Sentential form. (Section-A) It produces string that has special Quele from the stack symbole in defination G = (V, T, P, 8). If the 8 => w it is known as left If the 8 => w it is known as sight most sentential form. Ex:-1 Consider the grammer E -> E+E E->E*E E -> id/E Using left & Right sontential form & derice the string was id * id + id. Clift sontential folni-Ex id * E ti id & E + E = id * id + E

